

Building Developing AVR a better
way on Windows

Jon Wolfe
Anibit Technology

jonjwolfe@yahoo.com

WHY?
(Recapping from my Triembed presentation from 2 years ago)

● Ease of incorporating standard C/C++ code.
● Fantastic development support tools, and debugging!
● Much more customizable
● Free (as in beer)
● Plug-in support

– AVR Specific

– Visual Studio General

● Good integration with commercial programmer/debugger hardware
● No bootloader needed with external programmer. That’s more space for your

code!
● Built-in simulator, so you can start prototyping before you have any chips or

hardware!

Drawbacks

● Windows only
● Not open source
● While the IDE itself is not open source, the

compiler and support command line tools are
● Often requires a deeper understanding of C/C++

and linking/building than arduino.
● Less “beginner friendly”
● With great responsibility comes great power.

What wrong with just using the
Arduino IDE?

● The UI works ok for very small projects, but falls
apart at scale.

● The build system is “mystical”, and hides standard
C++ build practices.

● You don't really get away from C++ by using the
Arduino “language”, they give you a life jacket, but
the water still has sharks.

● Library management has made recent
improvements, but is still awkward.

Chocolate and peanut butter

You can have the best of both worlds:

You can convert an Arduino project into an Atmel Studio project, and still
use the Arduino libraries in your code!

There are 4 ways to do it:
1.Have an existing “raw C/C++” project, and pull in bits and pieces of an

Arduino library.
2.Have an existing Arduino project that you manually convert to a “raw

C/C++” project.
3.Use the new “Import Arduino project” option in Atmel Studio
4.Use the Visual Micro for Arduino plug in.

Pros/cons

Method 1: Have an existing “raw C/C++” project,
and pull in bits and pieces of an Arduino library.

Pros:
● Least disruptive to your existing RAW c++ project.

Cons:
● You may end up pulling in more that you had

planned or having to write “shim” code to satisfy
some of the libraries dependencies.

Pros/cons

Method 2: Have an existing Arduino project that you manually
convert to a “raw C/C++” project.

● Pros
– You have a high degree of control over the conversion, and also

know the state of the code when your done.

– You can get very specific with your conversion, changing compiler
and linker flags to suit special needs.

● Cons
– The most amount of work to convert, especially a concern if you pull

upstream changes from libraries.

– Requires the most C++ language and compiler wisdom.

Pros/Cons

● Method 3: Use the new “Import Arduino project” option in
Atmel Studio

● Pros:
– Less work than options 1 & 2.

– Changes your Arduino project into a C++ project.

● Cons
– Not completely error free, sometimes manual changes may

need to be made

– Like method 2, future updates to published libraries may have
to be manually incoporated.

Pros/Cons

● Method 4: Use the Visual Micro for Arduino plug in.
● Pros

– Minimally invasive option, uses your existing project as-is (in other words,
not an “import”)

– Only option that has “debug over serial”*($$$)

● Cons
– Subject to some of the same build system “voodoo” as the Arduino IDE,

since it uses the the Arduino tools for building.

– Free for development and building, but debuging features is a paid addon

– Debug over serial is less capable than JTAG o DebugWire Atmel
interfaces

