Building Developing AVR a better
way on Windows

Jon Wolfe
Anibit Technology
jonjwolfe@yahoo.com

WHY?

(Recapping from my Triembed presentation from 2 years ago)

Ease of incorporating standard C/C++ code.

Fantastic development support tools, and debugging!

Much more customizable

Free (as in beer)

Plug-in support

- AVR Specific

- Visual Studio General

Good integration with commercial programmer/debugger hardware

No bootloader needed with external programmer. That’s more space for your
code!

Built-in simulator, so you can start prototyping before you have any chips or
hardware!

Drawbacks

Windows only
Not open source

While the IDE itself is not open source, the
compiler and support command line tools are

Often requires a deeper understanding of C/C++
and linking/building than arduino.

Less “beginner friendly”

What wrong with just using the
Arduino IDE?

* The Ul works ok for very small projects, but falls
apart at scale.

* The build system is “mystical”’, and hides standard
C++ build practices.

* You don't really get away from C++ by using the

Arduino “language”, they give you a life jacket, but
the water still has sharks.

 Library management has made recent
Improvements, but is still awkward.

Chocolate and peanut butter

You can have the best of both worlds:

You can convert an Arduino project into an Atmel Studio project, and still
use the Arduino libraries in your code!

There are 4 ways to do it:

1.Have an existing “raw C/C++” project, and pull in bits and pieces of an
Arduino library.

2.Have an existing Arduino project that you manually convert to a “raw
C/C++" project.

3.Use the new “Import Arduino project” option in Atmel Studio

4.Use the Visual Micro for Arduino plug in.

Pros/cons

Method 1: Have an existing “raw C/C++" project,
and pull in bits and pieces of an Arduino library.

Pros:
» Least disruptive to your existing RAW c++ project.

cons:

e You may end up pulling in more that you had
planned or having to write “shim” code to satisfy
some of the libraries dependencies.

Pros/cons

Method 2: Have an existing Arduino project that you manually
convert to a “raw C/C++” project.
* Pros

- You have a high degree of control over the conversion, and also
know the state of the code when your done.

- You can get very specific with your conversion, changing compiler
and linker flags to suit special needs.

e Cons

- The most amount of work to convert, especially a concern if you pull
upstream changes from libraries.

- Requires the most C++ language and compiler wisdom.

Pros/Cons

* Method 3: Use the new “Import Arduino project” option in
Atmel Studio

* Pros:
- Less work than options 1 & 2.
- Changes your Arduino project into a C++ project.

e Cons

- Not completely error free, sometimes manual changes may
need to be made

- Like method 2, future updates to published libraries may have
to be manually incoporated.

Pros/Cons

* Method 4: Use the Visual Micro for Arduino plug in.

* Pros

- Minimally invasive option, uses your existing project as-is (in other words,
not an “import”)

- Only option that has “debug over serial™*($$3$)

e Cons

- Subject to some of the same build system “voodoo” as the Arduino IDE,
since it uses the the Arduino tools for building.

- Free for development and building, but debuging features is a paid addon

- Debug over serial is less capable than JTAG o DebugWire Atmel
interfaces

