Pete Soper, Apex Proto Factory
TriEmbed April 14, 2018



Outline

* Who Is This Guy?
« Context

« Composing Asynchronous Programs
with Arduino

 The Right Tool for the Job

A Simple Task Library
» Characteristics
* Key API
» State Diagram

* References and Q & A




Who Is This guy?

 Auburn and University of Alabama,
Huntsville

» Started engineering, focus on
experimental psych, found CS

* Most effort put into human factors
prep for Skylab and Shuttle:
learned computing from the metal
up as a side effect

« @OEMs writing language tool chain,
virtualization, OS and datacomm
software, ending with architecture

* Data General, Business Application
Systems, Network Products,
Encore Computer, Sun
Microsystems




Who?

» After three back-to-back startups, took
a long sabbatical to do just as |
pleased

* Looped back to a focus on electronics
after childhood studies under IBM dad
while engaging with area interest
groups and community service work

 Doing embedded business as Apex
Proto Factory

+ Design, fab, software, consulting
+ Also some teaching




Context

+ Teaching an ad hoc software
development/engineering course

« 90% Lab, 10% Lecture

+ Created repository of software and a
series of “lab kits” of Arduino-based

hardware to explore embedded
systems




’

m
mm
+ O
D QN
o C
o)
O S
c O
U,b
c U
eu
QL Q
. -
o O
n N
hI
C.I
> S
o =22
. O Q
m o s
35
= x0
v oY
o 3
O
L &



Composing Asynchronous

Programs

« How hard is it to make an Arduino rub
its (figurative) stomach, pat its head,
and sing a song in response to a cue,
all at the same time and with
different time measures?

e How hard is it to make it reliable?
« How hard is it to change?




The Right Tool for the Job

* Arduinos are great for simple tasks, but
we sometimes need to push them
hard

* In industry, standard practice for an
application involving a lot of tummy
rubbing and needing very reliable
responses to cues (e.qg. inside a car
engine) is to use a “Real Time
Operating System” (RTOS)

* Preemptive thread (task) switching

* Priorities

+ Real and virtual oodles of other stuff
like resource management




But Arduinos Are Memory-poor

* Uno has 2048 bytes data, 32k code

* Preemption requires state
save/restore, typically with
multiple stacks: out of the
question

+ A compromise is needed

+ Cooperative multi-tasking but with one
asynchronous mechanism




What Is a Task in This Context?

» A task is a managed function call with
finite work per invocation that always
returns. It can be invoked at a set
time, In response to an event
signaled by another task or interrupt
handler, or just whenever it next gets
a turn in a round-robin fashion

+ Wikipedia “cooperative multitasking”




A Simple Task Library

* An appplication creates tasks, then
starts a scheduler that never returns
* Three task flavors:
+ Regular: runs whenever it can
* Scheduled: runs after a set time
* Event: runs after an event
* Three states:
* Executing
* Runable: waiting for turn to execute
* Pending: waiting for time or event




Creating a Task

e uint8_t createTask(void func func,
task type type, uint32 t
wait_milliseconds, bool keepalive,
void *local);

+ Returns ID

* Function to call, type as per previous
slide

« Nonzero wait relevant for scheduled

 When keepalive is false, task is
destroyed after next execution

» Multiple tasks sharing same function
can have different task-local data




Typical Program Set Up

void setup() {
Task::begin();
static uint8 t tid = ask: :createTask(otherFunc,
event_ task,
0, true, NULL):;
Task::createTask(someFunc, scheduled_task,
1000, true, &tid):
Task: :scheduler() ;
}

void loop() {



How it Works

Event task with Keep Alive

Destroyed if not Keep Alive Pending (LIST)

Scheduled with Keep Alive /

createTask()
Reqular with Keep Alive

Runnable (FIFO)

AllE Eoem ey &ved Task P

Scheduler finds next
tazk in Run Queue

i

Scheduler finds schedule task
time delay iz completed

Task State by Type



References and Q & A

» Public repository
https://bitbucket.org/sugarpops/labkit

e Subdirectories lib/Task and
lib/NRingBuffer

« Emalil pete@soper.us



https://bitbucket.org/sugarpops/labkit

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

