
Non-premptive Multitasking for Arduino

Pete Soper, Apex Proto Factory
TriEmbed April 14, 2018

Outline

Who Is This Guy?
Context
Composing Asynchronous Programs

with Arduino
The Right Tool for the Job
A Simple Task Library

Characteristics
Key API
State Diagram

References and Q & A

Who Is This guy?

Auburn and University of Alabama,
Huntsville

Started engineering, focus on
experimental psych, found CS

Most effort put into human factors
prep for Skylab and Shuttle:
learned computing from the metal
up as a side effect

@OEMs writing language tool chain,
virtualization, OS and datacomm
software, ending with architecture

Data General, Business Application
Systems, Network Products,
Encore Computer, Sun
Microsystems

Who?

After three back-to-back startups, took
a long sabbatical to do just as I
pleased

Looped back to a focus on electronics
after childhood studies under IBM dad
while engaging with area interest
groups and community service work

Doing embedded business as Apex
Proto Factory

Design, fab, software, consulting
Also some teaching

Context

Teaching an ad hoc software
development/engineering course

90% Lab, 10% Lecture
Created repository of software and a

series of “lab kits” of Arduino-based
hardware to explore embedded
systems

LabKit 3.0

240x320 touchscreen, Uno, buttons,
LEDs, piezo, I2C bus brought out

Composing Asynchronous
Programs

How hard is it to make an Arduino rub
its (figurative) stomach, pat its head,
and sing a song in response to a cue,
all at the same time and with
different time measures?

How hard is it to make it reliable?
How hard is it to change?

The Right Tool for the Job

Arduinos are great for simple tasks, but
we sometimes need to push them
hard

In industry, standard practice for an
application involving a lot of tummy
rubbing and needing very reliable
responses to cues (e.g. inside a car
engine) is to use a “Real Time
Operating System” (RTOS)

Preemptive thread (task) switching
Priorities
Real and virtual oodles of other stuff

like resource management

But Arduinos Are Memory-poor

Uno has 2048 bytes data, 32k code
Preemption requires state

save/restore, typically with
multiple stacks: out of the
question

A compromise is needed
Cooperative multi-tasking but with one

asynchronous mechanism

What Is a Task in This Context?

A task is a managed function call with
finite work per invocation that always
returns. It can be invoked at a set
time, in response to an event
signaled by another task or interrupt
handler, or just whenever it next gets
a turn in a round-robin fashion

Wikipedia “cooperative multitasking”

A Simple Task Library

An appplication creates tasks, then
starts a scheduler that never returns

Three task flavors:
Regular: runs whenever it can
Scheduled: runs after a set time
Event: runs after an event

Three states:
Executing
Runable: waiting for turn to execute
Pending: waiting for time or event

Creating a Task

uint8_t createTask(void_func func,
task_type type, uint32_t
wait_milliseconds, bool keepalive,
void *local);

Returns ID
Function to call, type as per previous

slide
Nonzero wait relevant for scheduled
When keepalive is false, task is

destroyed after next execution
Multiple tasks sharing same function

can have different task-local data

Typical Program Set Up

How it Works

References and Q & A

Public repository
https://bitbucket.org/sugarpops/labkit

Subdirectories lib/Task and
lib/NRingBuffer

Email pete@soper.us

https://bitbucket.org/sugarpops/labkit

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

